翻訳と辞書 |
Topological tensor product : ウィキペディア英語版 | Topological tensor product In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hilbert spaces), but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle. ==Tensor products of Hilbert spaces== :(詳細はsesquilinear form (scalar product) induced by the sesquilinear forms of ''A'' and ''B''. So in particular it has a natural positive definite quadratic form, and the corresponding completion is a Hilbert space ''A''⊗''B'', called the (Hilbert space) tensor product of ''A'' and ''B''. If the vectors ''ai'' and ''bj'' run through orthonormal bases of ''A'' and ''B'', then the vectors ''ai''⊗''bj'' form an orthonormal basis of ''A''⊗''B''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Topological tensor product」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|